All files / transpiler/output/codegen/assignment/handlers BitAccessHandlers.ts

100% Statements 57/57
93.75% Branches 15/16
100% Functions 7/7
100% Lines 57/57

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214                                      26x 5x                     8x   8x 8x 8x     8x 7x             7x 1x         6x                               9x   9x 9x 9x 9x     9x 8x             8x 2x         6x                                 2x           2x     2x       2x 2x   2x                   5x   5x 5x   5x 1x     3x     3x   4x   3x   3x     3x 3x   3x                         2x     2x 2x   2x 2x 2x 2x 1x   1x 1x 1x           1x 1x 1x 1x         1x           14x                  
/**
 * Integer bit access assignment handlers (ADR-109).
 *
 * Handles bit manipulation on integer variables:
 * - INTEGER_BIT: flags[3] <- true
 * - INTEGER_BIT_RANGE: flags[0, 3] <- 5
 * - STRUCT_MEMBER_BIT: item.byte[7] <- true
 * - ARRAY_ELEMENT_BIT: matrix[i][j][FIELD_BIT] <- false
 */
import AssignmentKind from "../AssignmentKind";
import IAssignmentContext from "../IAssignmentContext";
import IHandlerDeps from "./IHandlerDeps";
import BitUtils from "../../../../../utils/BitUtils";
import TAssignmentHandler from "./TAssignmentHandler";
 
/**
 * Validate compound operators are not used with bit access.
 */
function validateNotCompound(ctx: IAssignmentContext): void {
  if (ctx.isCompound) {
    throw new Error(
      `Compound assignment operators not supported for bit field access: ${ctx.cnextOp}`,
    );
  }
}
 
/**
 * Handle single bit on integer variable: flags[3] <- true
 * Also handles float bit indexing: f32Var[3] <- true
 */
function handleIntegerBit(ctx: IAssignmentContext, deps: IHandlerDeps): string {
  validateNotCompound(ctx);
 
  const name = ctx.identifiers[0];
  const bitIndex = deps.generateExpression(ctx.subscripts[0]);
  const typeInfo = deps.typeRegistry.get(name);
 
  // Check for float bit indexing
  if (typeInfo) {
    const floatResult = deps.generateFloatBitWrite(
      name,
      typeInfo,
      bitIndex,
      null, // single bit, no width
      ctx.generatedValue,
    );
    if (floatResult !== null) {
      return floatResult;
    }
  }
 
  // Integer bit write - pass type for 64-bit aware code generation
  return BitUtils.singleBitWrite(
    name,
    bitIndex,
    ctx.generatedValue,
    typeInfo?.baseType,
  );
}
 
/**
 * Handle bit range on integer variable: flags[0, 3] <- 5
 * Also handles float bit range: f32Var[0, 8] <- 0xFF
 */
function handleIntegerBitRange(
  ctx: IAssignmentContext,
  deps: IHandlerDeps,
): string {
  validateNotCompound(ctx);
 
  const name = ctx.identifiers[0];
  const start = deps.generateExpression(ctx.subscripts[0]);
  const width = deps.generateExpression(ctx.subscripts[1]);
  const typeInfo = deps.typeRegistry.get(name);
 
  // Check for float bit indexing
  if (typeInfo) {
    const floatResult = deps.generateFloatBitWrite(
      name,
      typeInfo,
      start,
      width, // pass width for range writes
      ctx.generatedValue,
    );
    if (floatResult !== null) {
      return floatResult;
    }
  }
 
  // Integer bit range write - pass type for 64-bit aware code generation
  return BitUtils.multiBitWrite(
    name,
    start,
    width,
    ctx.generatedValue,
    typeInfo?.baseType,
  );
}
 
/**
 * Handle bit on struct member: item.byte[7] <- true
 * This is handled through MEMBER_CHAIN with bit detection.
 */
function handleStructMemberBit(
  ctx: IAssignmentContext,
  deps: IHandlerDeps,
): string {
  validateNotCompound(ctx);
 
  // The target up to the last subscript is the struct member path
  // The last subscript is the bit index
  // This pattern is complex - the target needs to be built from the member chain
  // For now, delegate to the existing target generator and build the bit op
  const target = deps.generateAssignmentTarget(ctx.targetCtx);
 
  // Extract the bit index from the last subscript
  const bitIndex = deps.generateExpression(ctx.subscripts.at(-1)!);
 
  // Limitation: Uses literal "1" which works for types up to 32 bits.
  // For 64-bit struct members, would need to track member type through chain.
  const one = "1";
  const intValue = BitUtils.boolToInt(ctx.generatedValue);
 
  return `${target} = (${target} & ~(${one} << ${bitIndex})) | (${intValue} << ${bitIndex});`;
}
 
/**
 * Handle bit on multi-dimensional array element: matrix[i][j][FIELD_BIT] <- false
 */
function handleArrayElementBit(
  ctx: IAssignmentContext,
  deps: IHandlerDeps,
): string {
  validateNotCompound(ctx);
 
  const arrayName = ctx.identifiers[0];
  const typeInfo = deps.typeRegistry.get(arrayName);
 
  if (!typeInfo?.arrayDimensions) {
    throw new Error(`Error: ${arrayName} is not an array`);
  }
 
  const numDims = typeInfo.arrayDimensions.length;
 
  // Array indices are subscripts[0..numDims-1], bit index is subscripts[numDims]
  const arrayIndices = ctx.subscripts
    .slice(0, numDims)
    .map((e) => `[${deps.generateExpression(e)}]`)
    .join("");
  const bitIndex = deps.generateExpression(ctx.subscripts[numDims]);
 
  const arrayElement = `${arrayName}${arrayIndices}`;
 
  // Use 1ULL for 64-bit element types
  const one = BitUtils.oneForType(typeInfo.baseType);
  const intValue = BitUtils.boolToInt(ctx.generatedValue);
 
  return `${arrayElement} = (${arrayElement} & ~(${one} << ${bitIndex})) | (${intValue} << ${bitIndex});`;
}
 
/**
 * Handle bit range through struct chain: devices[0].control[0, 4] <- 15
 *
 * The target is a chain like array[idx].member or struct.field with a
 * bit range subscript [start, width] at the end.
 */
function handleStructChainBitRange(
  ctx: IAssignmentContext,
  deps: IHandlerDeps,
): string {
  validateNotCompound(ctx);
 
  // Build the base target from postfixOps, excluding the last one (the bit range)
  const baseId = ctx.identifiers[0];
  const opsBeforeLast = ctx.postfixOps.slice(0, -1);
 
  let baseTarget = baseId;
  for (const op of opsBeforeLast) {
    const memberId = op.IDENTIFIER();
    if (memberId) {
      baseTarget += "." + memberId.getText();
    } else {
      const exprs = op.expression();
      Eif (exprs.length > 0) {
        baseTarget += "[" + deps.generateExpression(exprs[0]) + "]";
      }
    }
  }
 
  // Get start and width from the last postfixOp (the bit range)
  const lastOp = ctx.postfixOps.at(-1)!;
  const bitRangeExprs = lastOp.expression();
  const start = deps.generateExpression(bitRangeExprs[0]);
  const width = deps.generateExpression(bitRangeExprs[1]);
 
  // Generate bit range write
  // Limitation: assumes 32-bit types. For 64-bit struct members,
  // would need to track member type through chain.
  return BitUtils.multiBitWrite(baseTarget, start, width, ctx.generatedValue);
}
 
/**
 * All bit access handlers for registration.
 */
const bitAccessHandlers: ReadonlyArray<[AssignmentKind, TAssignmentHandler]> = [
  [AssignmentKind.INTEGER_BIT, handleIntegerBit],
  [AssignmentKind.INTEGER_BIT_RANGE, handleIntegerBitRange],
  [AssignmentKind.STRUCT_MEMBER_BIT, handleStructMemberBit],
  [AssignmentKind.ARRAY_ELEMENT_BIT, handleArrayElementBit],
  [AssignmentKind.STRUCT_CHAIN_BIT_RANGE, handleStructChainBitRange],
];
 
export default bitAccessHandlers;